Ana içeriğe atla

TEST - SAYILARIN ÇÖZÜMLENMESİ ve TABAN ARİTMETİĞİ


SAYILARIN ÇÖZÜMLENMESİ ve

 TABAN ARİTMETİĞİ




SAYILARIN ÇÖZÜMLENMESİ


1.İki basamaklı bir sayının rakamlarının yer­leri  değiştirilirse, sayı 27 büyüyor. Bu sayının rakamları arasındaki fark aşağıdakilerden hangisidir?

A)  1   B) 2    C) 3     D) 4       E) 5



2. Her biri en az iki basamaklı olan 10 tane sayı vardır. Bunlardan her birinin birler basamağındaki rakam, sayısal değeri bakımından 1 küçültülür, onlar basamağındaki rakam 1 büyültülürse bu 10 sayının toplamı ne kadar artar?

A) 80     B) 89      C) 90     D) 99      E) 101



3. a, b rakamlarından oluşan iki basamaklı ab sayısı, rakamlarının toplamının x katı, ba sayısı rakamları toplamının y katı olduğuna göre x+y toplamı kaçtır?

A) 8     B) 9      C) 10      D) 11     E) 12




4.       x=A4BC2
         y=A2BC4
Yukarıda verilen x ve y sayıları, birer ve binler basamağı yer değiştirmiş olan 5 basamaklı iki sayıdır. Buna göre, x-y farkı kaçtır?

A) 2     B) 8    C) 198     D) 1998    E) 2000



5. ABCD ve ACBD dört basamaklı birer sayıdır. Bu iki sayının farkı 540 olduğuna göre, ½B-C½ farkı kaçtır?

A) 3     B) 4     C) 5     D) 6     E) 8



6. Üç basamaklı abc sayısının birler basamağı 4 tür. Birler basamağı ile yüzler basamağı değiştirildiğinde oluşan yeni sayı, abc sayısından 297 küçüktür. Buna göre, abc sayısının yüzler basamağı kaçtır?

A) 2   B) 3   C) 5  D) 7   E) 9



7. Üç basamaklı ABC sayısı iki basamaklı AB sayısından 232 fazladır. Buna göre, A+B+C toplamı kaçtır?

A) 13     B) 14    C) 15    D) 16     E) 17



8. Rakamları birbirinden farklı olan ve yüzler basamağındaki rakam ile birler basamağındaki rakam yer değiştirdiğinde sayı değeri 693 artan, üç basamaklı kaç tane ABC doğal sayısı vardır?

A) 8   B) 10    C) 12     D) 14   E) 16



9. Üç basamaklı  4AB sayısı, iki basamaklı BA sayısının 13 katından 7 fazladır. Buna göre, BA sayısı kaçtır?

A) 19   B) 25   C) 27    D) 29    E) 32



10. Üç basamaklı 9KM sayısı iki basamaklı KM sayısının 31 katıdır. Buna göre, K+M toplamı kaçtır?

A) 2    B) 3    C) 5   D) 6    E) 9



11. Rakamları birbirinden farkı beş basamaklı 28A9B sayısının 9 ile bölümünden kalan 7, aynı sayının 5 ile bölümünden kalan ise 1 dir. A¹0 olduğuna göre, A-B farkı kaçtır?

A) 6    B) 5   C) 4    D) 3   E) 2
12. A ve B birer rakam, AB ve BA da iki basamaklı sayılardır. Buna göre, AB-BA farkı aşağıdakilerden hangisi olamaz?

A) 9    B) 18    C) 36    D) 54    E) 61


TABAN ARİTMETİĞİ



13. (3a03)4=(140a)5 olabilmesi için a ne olmalıdır. ( 4 ye 5 taban gösterir.)

A) 1   B) 2    C) 3   D) 4   E)5



14. 38 in hangi tabandaki karşılığı 123 tür?

A) 5   B) 4   C) 3   D) 2   E) 1



15. n tabanına göre 101 sayısı 10 tabanına göre 50 ye eşit olduğuna göre n aşağıdakilerden hangisidir?

A) 4      B) 5      C) 6       D) 7        E) 8



16. 7 tabanındaki 266 sayısının 10 tabanındaki yazılışı nedir?

A) 184    B) 158    C) 146     D) 62     E) 38



17. 7 tabanındaki (356)7sayısının bir fazlası aynı tabanda nasıl yazılır?

A) 357   B) 360    C) 363    D) 365    E) 366



18. 10 ve 3 sayı tabanını göstermek üzere
         (222)10-(222)3
farkı, 10 tabanına göre kaçtır?

A) 192   B) 196    C) 206    D) 208    E) 212



19. a sıfırdan farklı bir rakamı, 4 ve m sayı tabanını göstermek üzere,
         (aaa)4=(aa)m
olduğuna göre, m kaçtır?

A) 9     B) 12     C) 15    D) 18     E) 20



20. 3, sayı tabanını göstermek üzere,
         (211)3-(112)3
farkı, 3 tabanına göre kaçtır?

A) 22    B) 21     C) 20    D) 12    E) 10



21. 5, sayı tabanını göstermek üzere,
         (123)5x(32)5
çarpımı, 5 tabanına göre kaçtır?

A) 100321    B) 100111     C) 10041    D) 141     E) 104



22. 2, sayı tabanını göstermek üzere, (110)2-(11)2 farkı, 2 tabanına göre kaçtır?

A) 1010     B) 101    C) 11     D) 10    E) 1



23. m ve 6 sayı tabanları olmak üzere (121)m=(100)6 olduğuna göre, m kaçtır?

A) 3      B) 4      C) 5       D) 7      E) 8



24. 2 ve 5 sayı tabanını göstermek üzere
         (2a)5=(1011)2
olduğuna göre, a kaçtır?

A) 0      B) 1     C) 2     D) 3     E) 4



25. 4, sayı tabanını göstermek üzere, (213)4x(23)4 çarpma işleminin sonucu 4 tabanına göre aşağıdakilerden hangisidir?

A) 13231      B) 13221        C) 13213
D) 12321      E) 12231



26. 10 ve m sayı tabını göstermek üzere, (97)10=(241)m olduğuna göre, m kaçtır?

A) 9    B) 8     C) 7    D) 6    E) 5


27. m sayı tabanını göstermek üzere,
         (321)m.(3)m=(2013)m
olduğuna göre, m kaçtır?

A) 8   B) 7    C) 6    D) 5    E) 4



28. 84 doğal sayısı 4 tabanına göre yazıldığında, kaç basamaklı bir sayı elde edilir?

A) 4    B) 5    C) 6    D) 7    E) 8


1-C 1981 ÖSS
2-C 1982 ÖSS
3-D 1984 ÖSS
4-D 1986 ÖSS
5-D 1989 ÖSS
6-D 1994 ÖYS
7-B 1999 ÖSS1
8-E 1999 ÖSS1
9-E 1999 ÖSS2
10-B 2000 ÖSS
11-C 2001 ÖSS
12-E 2002 ÖSS
13-B 1975 ÜSS
14-A 1975 ÜSS
15-D 1988 ÖSS
16-C 1988 ÖSS
17-B 1989 ÖSS
18-B 1990 ÖSS
19-E 1990 ÖSS
20-E 1991 ÖSS
21-C 1992 ÖSS
22-C 1993 ÖSS
23-C 1994 ÖSS
24-B 1995 ÖSS
25-E 1996 ÖYS
26-D 1997 ÖSS
27-D 1997 ÖYS
28-D 2001 ÖSS



SAYILARIN ÇÖZÜMLENMESİ ve

 TABAN ARİTMETİĞİ




SAYILARIN ÇÖZÜMLENMESİ


1.İki basamaklı bir sayının rakamlarının yer­leri  değiştirilirse, sayı 27 büyüyor. Bu sayının rakamları arasındaki fark aşağıdakilerden hangisidir?

A)  1   B) 2    C) 3     D) 4       E) 5



2. Her biri en az iki basamaklı olan 10 tane sayı vardır. Bunlardan her birinin birler basamağındaki rakam, sayısal değeri bakımından 1 küçültülür, onlar basamağındaki rakam 1 büyültülürse bu 10 sayının toplamı ne kadar artar?

A) 80     B) 89      C) 90     D) 99      E) 101



3. a, b rakamlarından oluşan iki basamaklı ab sayısı, rakamlarının toplamının x katı, ba sayısı rakamları toplamının y katı olduğuna göre x+y toplamı kaçtır?

A) 8     B) 9      C) 10      D) 11     E) 12




4.       x=A4BC2
         y=A2BC4
Yukarıda verilen x ve y sayıları, birer ve binler basamağı yer değiştirmiş olan 5 basamaklı iki sayıdır. Buna göre, x-y farkı kaçtır?

A) 2     B) 8    C) 198     D) 1998    E) 2000



5. ABCD ve ACBD dört basamaklı birer sayıdır. Bu iki sayının farkı 540 olduğuna göre, ½B-C½ farkı kaçtır?

A) 3     B) 4     C) 5     D) 6     E) 8



6. Üç basamaklı abc sayısının birler basamağı 4 tür. Birler basamağı ile yüzler basamağı değiştirildiğinde oluşan yeni sayı, abc sayısından 297 küçüktür. Buna göre, abc sayısının yüzler basamağı kaçtır?

A) 2   B) 3   C) 5  D) 7   E) 9



7. Üç basamaklı ABC sayısı iki basamaklı AB sayısından 232 fazladır. Buna göre, A+B+C toplamı kaçtır?

A) 13     B) 14    C) 15    D) 16     E) 17



8. Rakamları birbirinden farklı olan ve yüzler basamağındaki rakam ile birler basamağındaki rakam yer değiştirdiğinde sayı değeri 693 artan, üç basamaklı kaç tane ABC doğal sayısı vardır?

A) 8   B) 10    C) 12     D) 14   E) 16



9. Üç basamaklı  4AB sayısı, iki basamaklı BA sayısının 13 katından 7 fazladır. Buna göre, BA sayısı kaçtır?

A) 19   B) 25   C) 27    D) 29    E) 32



10. Üç basamaklı 9KM sayısı iki basamaklı KM sayısının 31 katıdır. Buna göre, K+M toplamı kaçtır?

A) 2    B) 3    C) 5   D) 6    E) 9



11. Rakamları birbirinden farkı beş basamaklı 28A9B sayısının 9 ile bölümünden kalan 7, aynı sayının 5 ile bölümünden kalan ise 1 dir. A¹0 olduğuna göre, A-B farkı kaçtır?

A) 6    B) 5   C) 4    D) 3   E) 2
12. A ve B birer rakam, AB ve BA da iki basamaklı sayılardır. Buna göre, AB-BA farkı aşağıdakilerden hangisi olamaz?

A) 9    B) 18    C) 36    D) 54    E) 61


TABAN ARİTMETİĞİ



13. (3a03)4=(140a)5 olabilmesi için a ne olmalıdır. ( 4 ye 5 taban gösterir.)

A) 1   B) 2    C) 3   D) 4   E)5



14. 38 in hangi tabandaki karşılığı 123 tür?

A) 5   B) 4   C) 3   D) 2   E) 1



15. n tabanına göre 101 sayısı 10 tabanına göre 50 ye eşit olduğuna göre n aşağıdakilerden hangisidir?

A) 4      B) 5      C) 6       D) 7        E) 8



16. 7 tabanındaki 266 sayısının 10 tabanındaki yazılışı nedir?

A) 184    B) 158    C) 146     D) 62     E) 38



17. 7 tabanındaki (356)7sayısının bir fazlası aynı tabanda nasıl yazılır?

A) 357   B) 360    C) 363    D) 365    E) 366



18. 10 ve 3 sayı tabanını göstermek üzere
         (222)10-(222)3
farkı, 10 tabanına göre kaçtır?

A) 192   B) 196    C) 206    D) 208    E) 212



19. a sıfırdan farklı bir rakamı, 4 ve m sayı tabanını göstermek üzere,
         (aaa)4=(aa)m
olduğuna göre, m kaçtır?

A) 9     B) 12     C) 15    D) 18     E) 20



20. 3, sayı tabanını göstermek üzere,
         (211)3-(112)3
farkı, 3 tabanına göre kaçtır?

A) 22    B) 21     C) 20    D) 12    E) 10



21. 5, sayı tabanını göstermek üzere,
         (123)5x(32)5
çarpımı, 5 tabanına göre kaçtır?

A) 100321    B) 100111     C) 10041    D) 141     E) 104



22. 2, sayı tabanını göstermek üzere, (110)2-(11)2 farkı, 2 tabanına göre kaçtır?

A) 1010     B) 101    C) 11     D) 10    E) 1



23. m ve 6 sayı tabanları olmak üzere (121)m=(100)6 olduğuna göre, m kaçtır?

A) 3      B) 4      C) 5       D) 7      E) 8



24. 2 ve 5 sayı tabanını göstermek üzere
         (2a)5=(1011)2
olduğuna göre, a kaçtır?

A) 0      B) 1     C) 2     D) 3     E) 4



25. 4, sayı tabanını göstermek üzere, (213)4x(23)4 çarpma işleminin sonucu 4 tabanına göre aşağıdakilerden hangisidir?

A) 13231      B) 13221        C) 13213
D) 12321      E) 12231



26. 10 ve m sayı tabını göstermek üzere, (97)10=(241)m olduğuna göre, m kaçtır?

A) 9    B) 8     C) 7    D) 6    E) 5


27. m sayı tabanını göstermek üzere,
         (321)m.(3)m=(2013)m
olduğuna göre, m kaçtır?

A) 8   B) 7    C) 6    D) 5    E) 4



28. 84 doğal sayısı 4 tabanına göre yazıldığında, kaç basamaklı bir sayı elde edilir?

A) 4    B) 5    C) 6    D) 7    E) 8


1-C 1981 ÖSS
2-C 1982 ÖSS
3-D 1984 ÖSS
4-D 1986 ÖSS
5-D 1989 ÖSS
6-D 1994 ÖYS
7-B 1999 ÖSS1
8-E 1999 ÖSS1
9-E 1999 ÖSS2
10-B 2000 ÖSS
11-C 2001 ÖSS
12-E 2002 ÖSS
13-B 1975 ÜSS
14-A 1975 ÜSS
15-D 1988 ÖSS
16-C 1988 ÖSS
17-B 1989 ÖSS
18-B 1990 ÖSS
19-E 1990 ÖSS
20-E 1991 ÖSS
21-C 1992 ÖSS
22-C 1993 ÖSS
23-C 1994 ÖSS
24-B 1995 ÖSS
25-E 1996 ÖYS
26-D 1997 ÖSS
27-D 1997 ÖYS
28-D 2001 ÖSS



SAYILARIN ÇÖZÜMLENMESİ ve

 TABAN ARİTMETİĞİ




SAYILARIN ÇÖZÜMLENMESİ


1.İki basamaklı bir sayının rakamlarının yer­leri  değiştirilirse, sayı 27 büyüyor. Bu sayının rakamları arasındaki fark aşağıdakilerden hangisidir?

A)  1   B) 2    C) 3     D) 4       E) 5



2. Her biri en az iki basamaklı olan 10 tane sayı vardır. Bunlardan her birinin birler basamağındaki rakam, sayısal değeri bakımından 1 küçültülür, onlar basamağındaki rakam 1 büyültülürse bu 10 sayının toplamı ne kadar artar?

A) 80     B) 89      C) 90     D) 99      E) 101



3. a, b rakamlarından oluşan iki basamaklı ab sayısı, rakamlarının toplamının x katı, ba sayısı rakamları toplamının y katı olduğuna göre x+y toplamı kaçtır?

A) 8     B) 9      C) 10      D) 11     E) 12




4.       x=A4BC2
         y=A2BC4
Yukarıda verilen x ve y sayıları, birer ve binler basamağı yer değiştirmiş olan 5 basamaklı iki sayıdır. Buna göre, x-y farkı kaçtır?

A) 2     B) 8    C) 198     D) 1998    E) 2000



5. ABCD ve ACBD dört basamaklı birer sayıdır. Bu iki sayının farkı 540 olduğuna göre, ½B-C½ farkı kaçtır?

A) 3     B) 4     C) 5     D) 6     E) 8



6. Üç basamaklı abc sayısının birler basamağı 4 tür. Birler basamağı ile yüzler basamağı değiştirildiğinde oluşan yeni sayı, abc sayısından 297 küçüktür. Buna göre, abc sayısının yüzler basamağı kaçtır?

A) 2   B) 3   C) 5  D) 7   E) 9



7. Üç basamaklı ABC sayısı iki basamaklı AB sayısından 232 fazladır. Buna göre, A+B+C toplamı kaçtır?

A) 13     B) 14    C) 15    D) 16     E) 17



8. Rakamları birbirinden farklı olan ve yüzler basamağındaki rakam ile birler basamağındaki rakam yer değiştirdiğinde sayı değeri 693 artan, üç basamaklı kaç tane ABC doğal sayısı vardır?

A) 8   B) 10    C) 12     D) 14   E) 16



9. Üç basamaklı  4AB sayısı, iki basamaklı BA sayısının 13 katından 7 fazladır. Buna göre, BA sayısı kaçtır?

A) 19   B) 25   C) 27    D) 29    E) 32



10. Üç basamaklı 9KM sayısı iki basamaklı KM sayısının 31 katıdır. Buna göre, K+M toplamı kaçtır?

A) 2    B) 3    C) 5   D) 6    E) 9



11. Rakamları birbirinden farkı beş basamaklı 28A9B sayısının 9 ile bölümünden kalan 7, aynı sayının 5 ile bölümünden kalan ise 1 dir. A¹0 olduğuna göre, A-B farkı kaçtır?

A) 6    B) 5   C) 4    D) 3   E) 2
12. A ve B birer rakam, AB ve BA da iki basamaklı sayılardır. Buna göre, AB-BA farkı aşağıdakilerden hangisi olamaz?

A) 9    B) 18    C) 36    D) 54    E) 61


TABAN ARİTMETİĞİ



13. (3a03)4=(140a)5 olabilmesi için a ne olmalıdır. ( 4 ye 5 taban gösterir.)

A) 1   B) 2    C) 3   D) 4   E)5



14. 38 in hangi tabandaki karşılığı 123 tür?

A) 5   B) 4   C) 3   D) 2   E) 1



15. n tabanına göre 101 sayısı 10 tabanına göre 50 ye eşit olduğuna göre n aşağıdakilerden hangisidir?

A) 4      B) 5      C) 6       D) 7        E) 8



16. 7 tabanındaki 266 sayısının 10 tabanındaki yazılışı nedir?

A) 184    B) 158    C) 146     D) 62     E) 38



17. 7 tabanındaki (356)7sayısının bir fazlası aynı tabanda nasıl yazılır?

A) 357   B) 360    C) 363    D) 365    E) 366



18. 10 ve 3 sayı tabanını göstermek üzere
         (222)10-(222)3
farkı, 10 tabanına göre kaçtır?

A) 192   B) 196    C) 206    D) 208    E) 212



19. a sıfırdan farklı bir rakamı, 4 ve m sayı tabanını göstermek üzere,
         (aaa)4=(aa)m
olduğuna göre, m kaçtır?

A) 9     B) 12     C) 15    D) 18     E) 20



20. 3, sayı tabanını göstermek üzere,
         (211)3-(112)3
farkı, 3 tabanına göre kaçtır?

A) 22    B) 21     C) 20    D) 12    E) 10



21. 5, sayı tabanını göstermek üzere,
         (123)5x(32)5
çarpımı, 5 tabanına göre kaçtır?

A) 100321    B) 100111     C) 10041    D) 141     E) 104



22. 2, sayı tabanını göstermek üzere, (110)2-(11)2 farkı, 2 tabanına göre kaçtır?

A) 1010     B) 101    C) 11     D) 10    E) 1



23. m ve 6 sayı tabanları olmak üzere (121)m=(100)6 olduğuna göre, m kaçtır?

A) 3      B) 4      C) 5       D) 7      E) 8



24. 2 ve 5 sayı tabanını göstermek üzere
         (2a)5=(1011)2
olduğuna göre, a kaçtır?

A) 0      B) 1     C) 2     D) 3     E) 4



25. 4, sayı tabanını göstermek üzere, (213)4x(23)4 çarpma işleminin sonucu 4 tabanına göre aşağıdakilerden hangisidir?

A) 13231      B) 13221        C) 13213
D) 12321      E) 12231



26. 10 ve m sayı tabını göstermek üzere, (97)10=(241)m olduğuna göre, m kaçtır?

A) 9    B) 8     C) 7    D) 6    E) 5


27. m sayı tabanını göstermek üzere,
         (321)m.(3)m=(2013)m
olduğuna göre, m kaçtır?

A) 8   B) 7    C) 6    D) 5    E) 4



28. 84 doğal sayısı 4 tabanına göre yazıldığında, kaç basamaklı bir sayı elde edilir?

A) 4    B) 5    C) 6    D) 7    E) 8


1-C 1981 ÖSS
2-C 1982 ÖSS
3-D 1984 ÖSS
4-D 1986 ÖSS
5-D 1989 ÖSS
6-D 1994 ÖYS
7-B 1999 ÖSS1
8-E 1999 ÖSS1
9-E 1999 ÖSS2
10-B 2000 ÖSS
11-C 2001 ÖSS
12-E 2002 ÖSS
13-B 1975 ÜSS
14-A 1975 ÜSS
15-D 1988 ÖSS
16-C 1988 ÖSS
17-B 1989 ÖSS
18-B 1990 ÖSS
19-E 1990 ÖSS
20-E 1991 ÖSS
21-C 1992 ÖSS
22-C 1993 ÖSS
23-C 1994 ÖSS
24-B 1995 ÖSS
25-E 1996 ÖYS
26-D 1997 ÖSS
27-D 1997 ÖYS
28-D 2001 ÖSS


Yorumlar

Bu blogdaki popüler yayınlar

Ustalık Belgesi Alma Koşulları

 Ustalık Belgesi Alma Koşulları Denklik İşlemleri Yeni Yönetmeliğe Göre Ustalık Belgesi Nasıl Alınır? Kimler Alabilir? Ustalık Belgesi Kapsamındaki Meslekler, Denklik Yoluyla Nasıl Alınır, Kapsamındaki Meslek Dalları Hakkında Sorularının Cevabı İçin Yazımızı Okumaya Devam Edeniz. Ustalık Belgesi Sahipleri Mesleklerinde Bağımsız İşyeri Açabilirler. Yanlarında Çırak Çalıştırmak İsteyen Belge Sahiplerinin Usta Öğreticilik Belgesi Alması Gereklidir. Usta Öğreticilik Belgesi Alma Şartları İçin Buradaki Yazılarımızı Okuyabilirsiniz. Kalfalık Ve Ustalık Sınavları Mesleki Eğitim Merkezleri Yılda 6 Kez, İki Ayda Bir Yapılır. Ustalık Sınavı Tarihleri En Geç 1 Hafta Önceden İlan Edilir. Sınavlarda Başarılı Olanlar Belge Alırken, Başarısız Olanlar Bir Sonraki Eğitim Döneminde Sadece Başarısız Oldukları Derslerden Sınava Girerler. Bir Adayın 4 Yıl 12 Dönem Sınava Girme Hakkı Bulunmaktadır. Bu Süre Zarfında Sınava Girmeyenler Haklarını Kaybederler. Hastane, Hapishane, Askerlik Ve Benzeri Sınava ...

1 Metreküp Kum Kaç El Arabası – Kaç Kürek Yapar

Ağırlık formülleri örnekleri rehberinden 1 metreküp kum – kürek çevirme ve 1 el arabası kum – kürek ölçüleri hesaplama ve birim çevirme ile ilgili bilgiler aşağıdaki satırda bulunmaktadır. 1 METREKÜP KUM – EL ARABASI – 1 METREKÜP KUM ÇEVİRME 1 metreküp kum kaç el arabası yapar? 20 el arabası eder. 1 el arabası kum kaç metreküp yapar? 0,5 m3 eder. 1 METREKÜP KUM – KÜREK – 1 METREKÜP KUM   ÇEVİRME 1 metreküp kum kaç kürek yapar? 400 kürek eder. 1 kürek kum kaç metreküp yapar? 0,005 m3 eder. Hesaplamada yararlanılan terimler: kaç metreküp kumdur, kaç el arabasıdır, kaç kürektir Hesaplamada yararlanılan kısaltmalar: Metreküp’ün kısaltması m3, El arabası’nin kısaltması ea, Kürek’ın kısaltması kürek Burada 1 metreküp kum – kürek hesaplama ve 1 metreküp kum – el arabası hesaplama örnekleri verilmiştir. Bu sayfada alan 1 metreküp kum hesaplama tablosu ve birim çevirici değerleri yaklaşık değerlerdir ve dolayısıyla kesin rakamları ifade etmez. Formüller vasıtasıyla hesaplanmı...

Metreküp – Kilogram Çevirme – Hesaplama Tablosu

Ağırlık birimleri hesaplama cetvelinden kilogramı metreküpe çevirme ve metreküpü kilograma çevirme örnekleri aşağıda yer almaktadır. METREKÜP KİLOGRAM ÇEVİRME ÖRNEKLERİ Aşağıda kullanılan metreküp – kilo çevirme formülü ayrıntılı değerlendirmeler dikkate alınmadan hesaplanmıştır. Yani halk arasındaki tabir ile düz hesaptır. Dolayısıyla bilimsel çalışmalarda dikkate alınmamalıdır. 1 m3 kaç kilogram eder?    1000 kg eder 2 m3 kaç kilogram eder?    2000 kg eder 3 m3 kaç kilogram eder?    3000 kg eder 4 m3 kaç kilogram eder?    4000 kg eder 5 m3 kaç kilogram eder?    5000 kg eder 6 m3 kaç kilogram eder?    6000 kg eder 7 m3 kaç kilogram eder?    7000 kg eder 8 m3 kaç kilogram eder?    8000 kg eder 9 m3 kaç kilogram eder?    9000 kg eder 10 m3 kaç kilogram eder?    10000 kg eder 11 m3 kaç kilogram eder?   ...